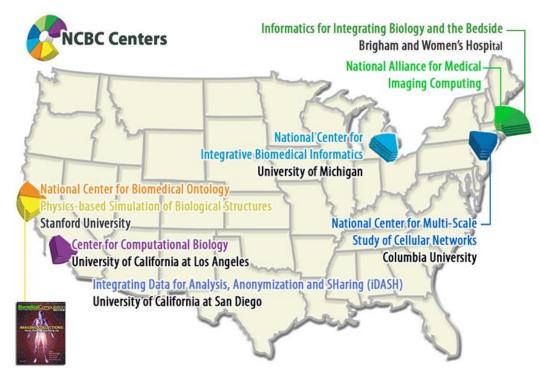


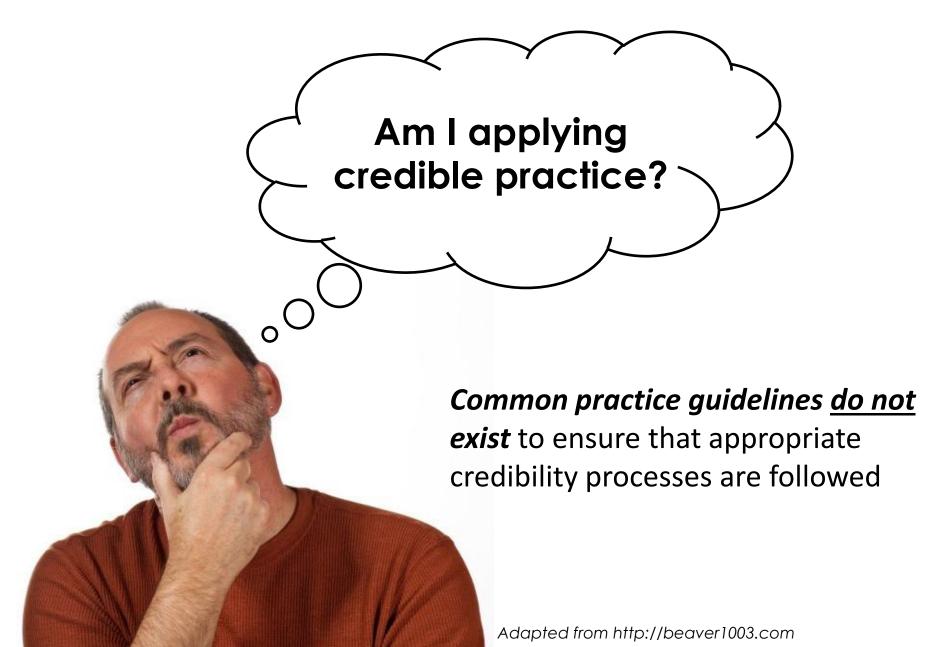
Committee on Credible Practice of Modeling & Simulation in Healthcare <u>https://simtk.org/home/cpms</u>

CREDIBILITY OF COMPUTATIONAL METHODS IN HEALTHCARE: A COMPARISON OF COMMUNITY-BASED STANDARDS AND GUIDELINES


<u>M. Horner^{1,2}</u>, L. Mulugeta^{1,2}, A. Erdemir¹, G. An¹, D.M. Eckmann¹, J.E. Bischoff^{1,2}, C.A. Hunt¹, J. Ku¹, D. Lochner¹, W.W. Lytton¹, V. Marmarelis¹, J.G. Myers¹, G. Peng¹, M.J. Steele¹ and M. Walton¹

IMAG/MSM Committee on Credible Practice of M&S in Healthcare
 ASME V&V40: Verification and Validation in Computational Modeling of Medical Devices

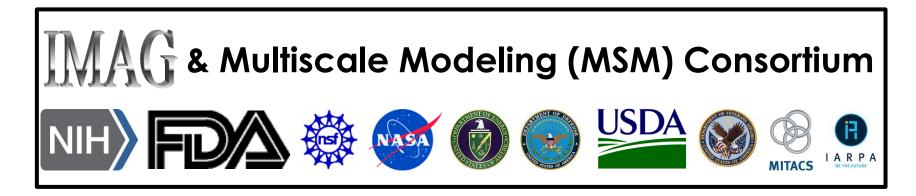
ASME Verification and Validation Symposium Las Vegas, Nevada May 18-20, 2016


BACKGROUND

- Computational modeling and simulation (M&S) methods have substantial potential to support research, clinical decisions and education in healthcare
- Government agencies and industry are making substantial investments on R&D activities in simulation-based medicine and notable discoveries are being made

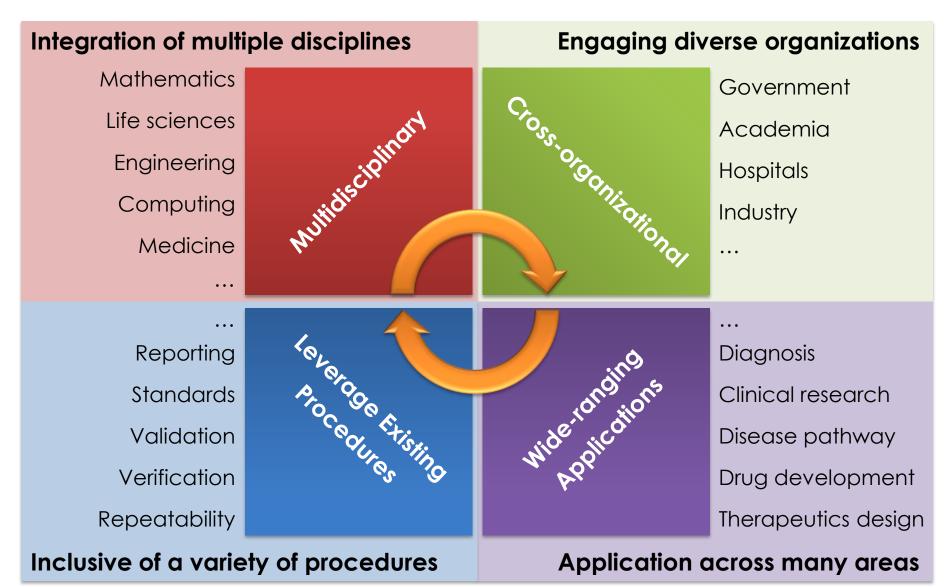
adapted from <u>NCBC website (2014)</u>

THE CHALLENGE



To bridge this gap, the

Committee on Credible Practice of Modeling & Simulation in Healthcare


was established under

Primary focus: Computational M&S for clinical research and decision-making

WHAT MAKES THE COMMITTEE UNIQUE?

COMMITTEE IMPLEMENTATION STRATEGY

COMMITTEE EXECUTIVE MEMBERS (EXECUTE & CHARGE)

Co-Chair

Cleveland Clinic

Co-Chair

W. Lytton, M.D. L. Mulugeta, M.Sc. Kings County Hosp. Downstate Med. Cntr InSilico Labs, LLC

G. An, MD U. of Chicago

J. Myers, Ph.D. NASA

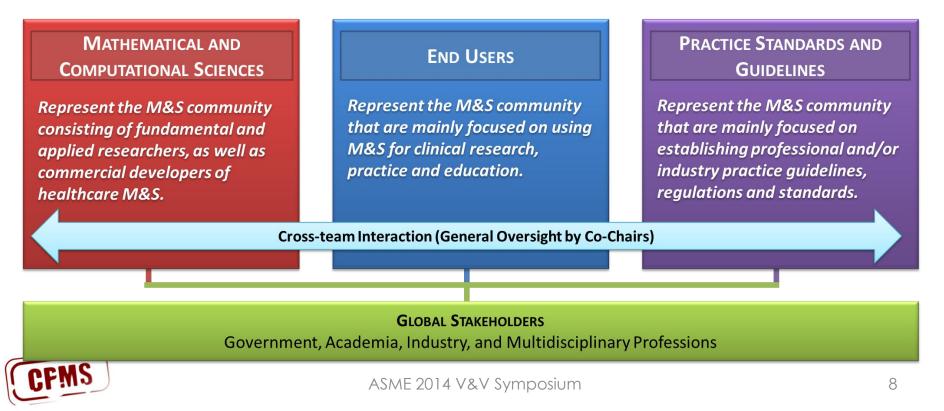
L. Tian, Ph.D. Stanford U.

J. Ku, Ph.D. T. Morrison, Ph.D. FDA

Stanford U.

ANSYS, Inc.

COMMUNICATION ACCOUNTABILITY **ADVISORY COUNCIL (REVIEW & ADVISE)** J. Bischoff, Ph.D. G. Peng, Ph.D. Al. Marsden, Ph.D. D. Lochner V. Marmarelis. Ph.D. Zimmer FDA Stanford U. NIH U. of Southern California M. Walton, Ph.D. A. Hunt, Ph.D. P. Pathmanathan, Ph.D. D. Eckmann, M.D., Ph.D. G. Pradhan, Ph.D. M. Steele, Ph.D. Wyle U. of California, SF FDA University of Pennsylvania Mayo Clinic NASA


Interagency Modeling and Analysis Group (IMAG) & Multiscale Modeling Consortium (MSM)

For full credentials of the CPMS members: http://wiki.simtk.org/cpms/CPMS Members

COMMITTEE IMPLEMENTATION STRATEGY

Use team-based structure to:

- Establish a balanced representation of the interests and perspectives of the different stakeholders
- Bridge synergistic activities in simulation-based medicine throughout the M&S communities

COMMITTEE'S CHARGE

Guidelines & Procedures

- Credible practice in computational medicine
- Leveraging readily available techniques
- Define novel translational workflows to enhance credibility practice

Demonstrate Workflows

- Conduct studies to develop novel credibility assessment procedures
- Disseminating examples of credibility assessment

Consistent Terminology

- Unify the use of M&S vocabulary across all stakeholders

Promote Good Practice

- Bridge synergistic activities within the M&S communities
- Conduct outreach activities

End Products

- I. "Guidelines for Credible Practice of M&S in Healthcare"
- II. Proposed model certification process
- III. Identify new areas of research to advance I & II

TEN SIMPLE RULES OF CREDIBLE PRACTICE

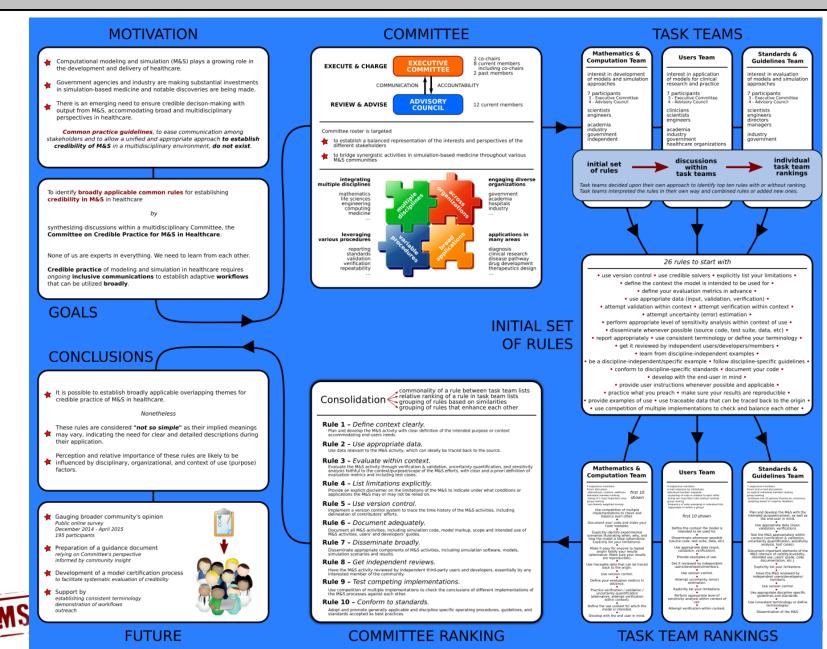
Primary deliverable: "Guidelines for Credible Practice of Modeling and Simulation in Healthcare"

Goal Oriented Activity: The CPMS Task Teams were charged to identify ten key elements or simple rules of credible practice in order to <u>establish a foundation</u> from which the "Guidelines for Credible Practice of Modeling and Simulation in Healthcare" can be developed.

Full details of this activity is available at: <u>http://wiki.simtk.org/cpms/Ten_Simple_Rules_of_Credible_Practice</u>

INITIAL SURVEY TO IDENTIFY THE "TEN SIMPLE RULES"

To initiate the Ten Simple Rules task:


- 1. 26 candidate rules were generated
- 2. Candidate rules were surveyed internally among the Committee's three Task Teams
- 3. Results from the three teams were consolidated to arrive at "Ten Simple Rules"

26 Candidate Rules of Credible Practice								
Use version control	Follow discipline-specific guidelines	Define the context the model is intended to be used for						
Use credible solvers	Attempt verification within context	Perform appropriate level of sensitivity analysis within context of use						
Explicitly list your limitations	Attempt uncertainty (error) estimation	Use consistent terminology or define your terminology						
Report appropriately	Make sure your results are reproducible	Get it reviewed by independent users/ developers/members						
Document your code	Define your evaluation metrics in advance	Provide user instructions whenever possible and applicable						
Provide examples of use	Conform to discipline-specific standards	Use traceable data that can be traced back to the origin						
Practice what you preach	Be a discipline-independent/ specific example	Disseminate whenever possible (source code, test suite, data, etc)						
Develop with the end user in mind	Learn from discipline-independent examples	Use competition of multiple implementations to check and balance each other						
Attempt validation within context	Use appropriate data (input, validation, verification)							

Full details are available at: http://wiki.simtk.org/cpms/Ten_Simple_Rules_of_Credible_Practice/Summary_of_Results

12

COMMITTEE'S PERSPECTIVE ON TSR OF CREDIBLE PRACTICE

3

STATUS OF THE TEN SIMPLE RULES (TSR) ACTIVITY

- In an effort to draw out globally well-balanced guidelines across the range of disciplines and application interests, a public survey was launched on August 15th, 2014 to obtain input from the broader M&S stakeholder community.
- The survey was closed on April 15, 2015 and the Data Analysis Team has started to analyze the results.
- A forum discussion thread has been initiated: https://simtk.org/forums/viewtopic.php?f=848&t=5616& sid=fdcab3f040d5c52b8667a0b0812d2e2b
- The raw data is also available at: https://simtk.org/websvn/wsvn/cpms/dat/Survey/Com plete%20Survey%20Results_Clean_04242015.xlsx 14

PUBLICLY SURVEYED PROPOSED RULES

-			
1	Engage potential end-user base.		Learn from specialized and broadly applicable guidelines for
2	Make the M&S results reproducible.	19	good practice.
3	Develop the M&S with the end-user in mind.		Follow discipline-specific guidelines and standards whenever
	Use appropriate data, e.g., for input, validation,	20	possible.
4	verification.		Perform uncertainty estimation/quantification within context
	Explicitly identify experimental scenarios that illustrate	21	of use.
5	when, why, and how the M&S is false or not applicable.		Perform numerical error estimation/quantification within
	Use competition of multiple M&S implementation	22	context of use.
6	methods to check and balance each other.		Get the M&S reviewed by independent users, developers,
	Document the development and use of M&S	23	and members of the intended stakeholder community.
7	appropriately.	24	Explicitly list limitations of the M&S.
	Use version control, i.e., to track different revisions of	25	Make it easy for anyone to repeat and/or falsify your results.
9	the model.	26	Use consistent terminology or define your terminology.
10	Be a discipline specific example of good practice.	27	Verify the M&S processes within context of use.
	Use data that can be traced back to the origin of		Report appropriately, i.e., to allow reproducibility, to assess
11	source.	28	reliability, and to establish accountability.
	Disseminate whenever and whatever is possible, e.g.,	29	Define the context in which the M&S is intended to be used.
12	source code, test suite, data.		Use credible, e.g. verified, solvers (code, software,
13	Validate the M&S activity within the context of use.	30	applications).
14	Perform sensitivity analysis within the context of use.	31	Conform to discipline-specific standards.
15	Define the M&S evaluation metrics in advance.	32	Disclose conflict of interests.
16	Make your code readable.	33	Adopt and promote standard operating procedures.
	Provide user instructions whenever possible and	34	Document your code.
17	applicable.	35	Provide clear descriptions of limitations.
18	Provide examples of use.	36	Use simulation software with established reliability.

CURRENT STATUS OF SURVEY ANALYSIS

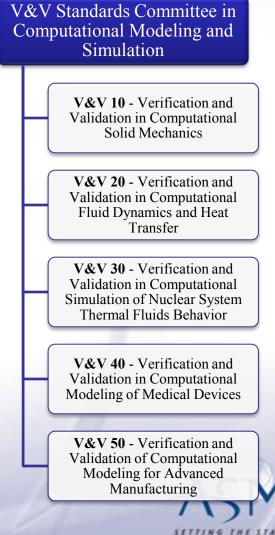
0	1	2	3	4	5
Not Applicable	Low	Moderately	Important	Very	Extremely
Not Important	Importance	Important		Important	Important

- Total responses: 186
- Total valid responses: 148 from
 - 4 continents, 10 disciplines, various levels of education and experience in M&S

Key Overlaps between Committee's perspectives & global M&S community

Simple Rule	Description
Define context clearly	Develop and document the subject, purpose, and intended use(s) of the model or simulation
Use appropriate data	Employ relevant and traceable information in the development or operation of a model or simulation.
Evaluate within context	Verification, validation, uncertainty quantification, and sensitivity analysis of the model or simulation are accomplished with respect to the reality of interest and intended use(s) of the model or simulation.
List limitations explicitly	Restrictions, constraints, or qualifications for or on the use of the model or simulation are available for consideration by the users or customers of a model or simulation.

FUTURE WORK


- Publish Committee's perspective, 'Ten "Not So" Simple Rules for Credible Practice of Modeling and Simulation in Healthcare: Perspectives from a Multidisciplinary Committee'
- Analyze public survey data, and publish results in PLOS Computational Biology in the form of "Ten Simple Rules of Credible Practice of M&S in Healthcare"
- Develop and publish the "Guidelines for Credible Practice in Modeling & Simulation in Healthcare" and as well as a "Model Certification Guideline" based off of the above findings
- Publish glossary of terms to help unify the use of M&S terminology across a variety of disciplines and stakeholders in the field – Draft: <u>http://tinyurl.com/ze4scnx</u>

ASME Committee on V&V in Computational Modeling and Simulation

- Standards Committee
 - Provide procedures for assessing and quantifying the accuracy and credibility of computational modeling and simulation

Codes & Standards

V&V 40 VERIFICATION AND VALIDATION IN COMPUTATIONAL MODELING OF MEDICAL DEVICES


• ASME V&V 40 Charter

- Provide procedures to standardize verification and validation for computational modeling of medical devices
- Charter approved in January 2011

Motivating factors

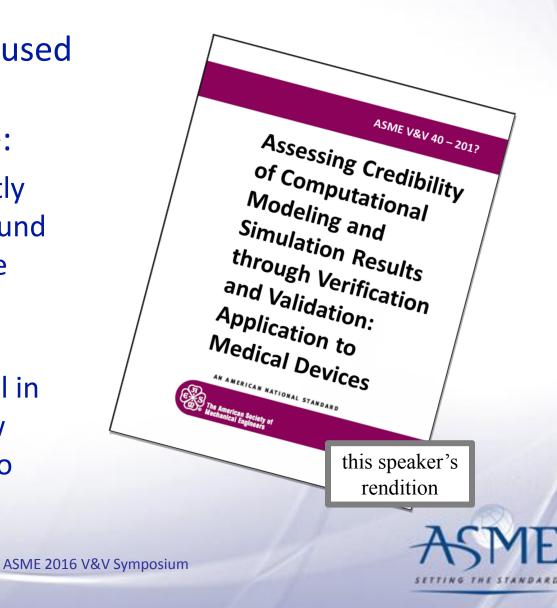
- Regulated industry with limited ability to validate clinically
- Increased emphasis on modeling to support device safety and/or efficacy
- Use of modeling hindered by lack of V&V guidance and expectations within medical device community

ASME 2016 V&V Symposium

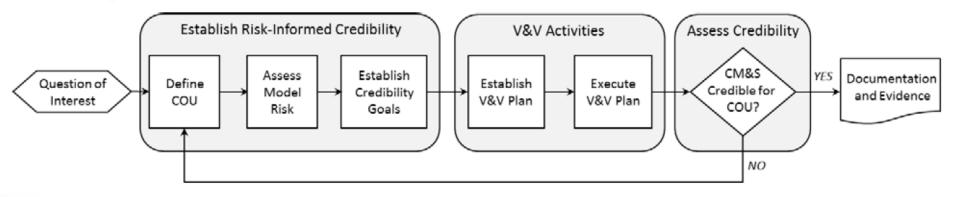
ETTING THE STANDAR

V&V 40 Subcommittee Membership

Carl Popelar, Chair, Southwest Research Institute Tina Morrison, Vice-Chair*, FDA Andrew Rau, Vice-Chair, Exponent Ryan Crane, Secretary, ASME


P. Afshari, Depuy-Synthes Spine B. P. Baillargeon, Dassault Systemes Simulia Corp D. Bardot. Medical Device Innovation Consortium A. Bestelmeyer, BD Technologies J. Bischoff. Zimmer J. P. Bodner, Medtronic Corp S. Cheng, Integra Life Sciences B. D. Choules, MED Institute R. Chow, Consultant J. C. Coburn, US Food and Drug Administration C. Corrales, Baxter Healthcare Corporation K. K. Debus, Cd-adapco M. Dharia, Zimmer Biomet S. Eswaran, Abbott Vascular C. Funkhouser, Baxter Healthcare Corporation K. Genc, Simpleware Inc. M. Goodin, Simutech Group I. Guler, Boston Scientific Corporation A. Gupta, Google Inc. P. Hariharan, US Food and Drug Administration W. Hary, Heartflow

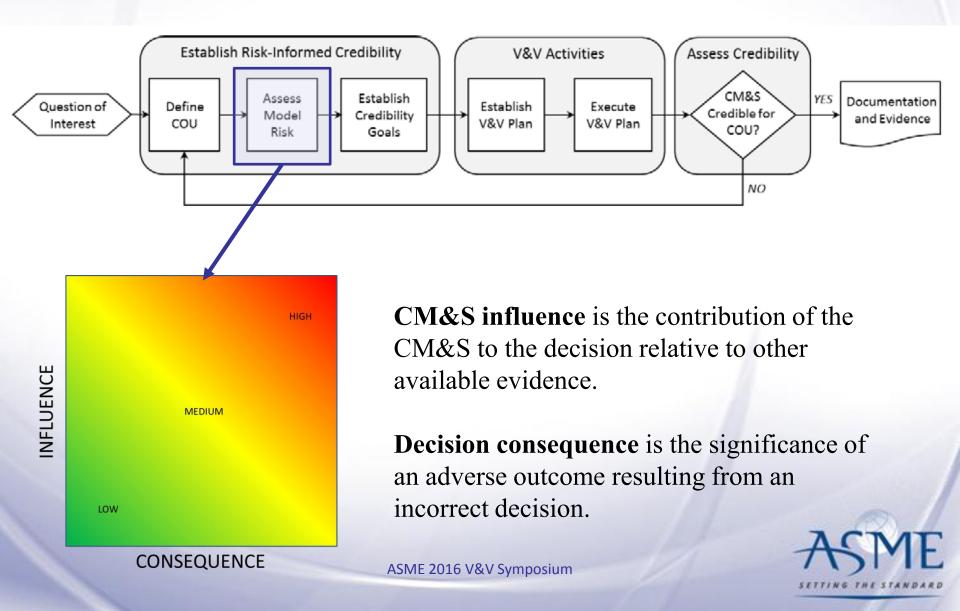
M. Horner, ANSYS, Inc.* H. Jin, Medtronic, Inc. A. Kiapour, 4WEB Medical Inc. L. Knudsen, Syncroness S. Kulkarni, VEXTEC Corporation D. Levine, Zimmer, Inc. X.M. Li, Consultant X Liu, Stryker Orthopaedics B. A. Lurie, W.L. Gore R. Marinescu, Smith & Nephew J. Mast, Hill-Rom, Inc. L. Mulugeta, Independent W. A. Olson, Ethicon Endo-surgery T. L. Rossman, Mayo Clinic P. Saffari, Endologix C. Scotti, W.L. Gore R. Swift, Cook Research Inc. P. Tomaszewski, Depuy Orthopaedics Inc T. Zhao, Edwards Lifesciences A. U. Nair, Alternate, BD Technologies N. R. Rebelo, Alternate, SIMULIA Western Region


SETTING THE STANDAR

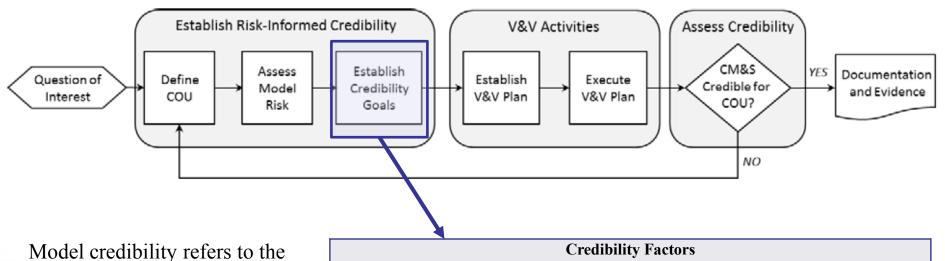
V&V 40 Activities

- Current effort focused on completing a standard or guide:
 - Document recently completed 2nd round of sub-committee balloting.
 - Comments were primarily editorial in nature with a few technical issues to be addressed.

Risk-Informed Credibility Assessment Method



The V&V40 guide outlines a process for making risk-informed determinations as to whether CM&S is credible for decisionmaking for a specified context of use.


ASME

ASME 2016 V&V Symposium

Risk Assessment

Credibility Assessment

Model credibility refers to the trust in the predictive capability of the computational model for the COU.

Trust can be established through the collection of V&V evidence and by demonstrating the applicability of the V&V activities to support the use of the CM for the COU.

Credibility Factors															
	Verif	icatio	n						Va	lidatic	n				
C	ode	S	olutio	n		Model Comparator Output Assessment					Applic	ability			
Software Quality Assurance	Numerical Algorithm Verification	Discretization Error	Use Error	Numerical Solver Error	System Configuration	System Properties	Boundary Conditions	Governing Equations	Sample Characterization	Control Over Test Conditions	Measurement Uncertainty	Equivalency of input and output types	Rigor of Output Comparison	Relevance of the Quantities of Interest	Applicability to the Context of Use

ASME 2016 V&V Symposium

Examples

mple 2: Context of Use dical device: a new posterior stabilized total knee arthrop	lasty assembly					
<i>text of Use:</i> Finite element analysis (FEA) will be used to sufficient strength to prevent lift-off of the new device. Stoff of the tibial component under a variety of loads. The lusively using the computational model. All device configure exists to compare with the computed results. No ber icular device. However, these FEA techniques have been stored at the second store of the seco	Example 3: Model risk Medical device: centrifugal blo	predicts ff is eval and No od pump for to increased red against a classification	the Q uated circulator namics ic hemolys predicat	ry support dentify the sis; those fi te device.	eatures wi	ill be directly assessed with
Example 4: Rigor of Output Comparison Medical device: centrifugal blood pump for circulatory support From Example 3, model risk was determined to be Medium-High. This determine the validation assessment criteria for "Rigor of Output Comp		obin levels ate interven fore, the de	during c tion of th ecision co h. This r	linical use le clinician onsequenc esult is dire	if hemolys to monitor e is HIGH. ectly used	rre's dimensional tolerances sis occurs. Patient injury r patient hemoglobin levels to determine the validation
 Within the scheme presented, the assessment levels for CM&S validat 1. Visual comparison concludes good agreement. 2. Comparison by simply measuring the differences between comexperimental data. Differences are less than 20%. 3. Comparison by simply measuring the differences between comexperimental data. 	nputational results and	Low		Consequen Medium 2	ice	
 experimental data. Differences are less than 10%. 4. Comparison with uncertainty captured and incorporated from the computational model. Differences are less than 5%, including uncertainty, but statistical distributions for further uncertainty questions. Comparison with uncertainties captured and incorporated from computational model, including comparison error. Differences etailetical distributions for riporate to uncertainty of the second distributions. 	consideration of some uantification are unknown. both the comparator and the are less than 5%, and	Medium High	2 3	3	4	
statistical distributions are known for rigorous treatment of unco Based on a Medium-High model risk for the blood pump, the validation demonstrating model accuracy to within 5 with uncertainty captured.			9	1	10	ASM

COMPARISON SUMMARY

	CPMS	V&V40				
Mission Statement	To establish credible practice guidelines, consistent terminology and proposed model certification process, as well as to demonstrate workflows and identify new areas of research for reliable development and application of M&S in healthcare practice and research.	Provide procedures to standardize verification and validation for computational modeling of medical devices.				
Primary stakeholders	Computational M&S in healthcare as a whole – mainly driven by research initiatives under the IMAG Multi-scale Modeling Consortium	Biomedical device industry, industry service providers, and regulatory and standards bodies such as the US Food and Drug Administration (FDA) and ASME				
End-product(s)	 "Guidelines for Credible Practice of M&S in Healthcare" Proposed model certification process Identify new areas of research to advance I & II 	 A standard (or guide) for, "Assessing Credibility of Computational Modeling & Simulation Through Verification & Validation: Application to Medical Devices" Series of examples that demonstrate application of one or more components of the standard 				
Approach to developing end- product(s)	 Executive Committee (EC) executes mission Advisory Council provides guidance to the EC Extensive use of crowd-sourcing of the healthcare and M&S community through surveys, wiki contributions and forum discussions 	 V&V40 sub-committee establishes standard direction through consensus Sub-groups, working groups, and task groups execute tasks related to governing scientific methods, devices, and content writing. 				
General credibility workflow	Apply the Ten Simple Rules of Credible Practice with appropriate intensity for given context of use (iterative).	Define Context of Use → Assess Model Risk → Establish Credibility Goals → Establish & Execute V&V Plan (iterative) → Assess Credibility → Document				

Committee on Credible Practice of Modeling & Simulation in Healthcare *https://simtk.org/home/cpms*

QUESTIONS?

V&V 40 VERIFICATION AND VALIDATION IN COMPUTATIONAL MODELING OF MEDICAL DEVICES

https://cstools.asme.org/csconnect/CommitteePages.cfm?Committee=100108782

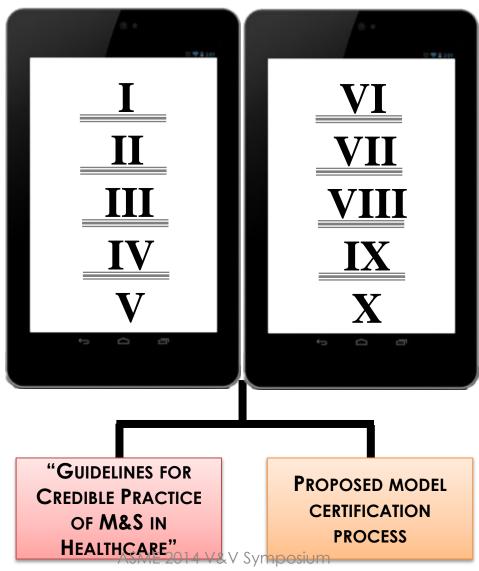
ASME 2016 V&V Symposium

dependable with a desired certainty level to guide research or support decision making within a prescribed application domain and intended use; establishing reproducibility & accountability

any activity involving **development**, **solution**, **interpretation** and **application** of computational representation of biological, environmental and man-made systems and their interaction thereof

specifically computational modeling; virtual representation of system(s) of interest in a usable form in order to provide descriptive and predictive metrics for timely and systematic exploration of the system(s)

computational solution of models to quantify descriptive and predictive metrics of system(s) of interest; including related post-processing efforts to calculate these metrics from raw analysis results



any activity involving **development**, **maintenance**, **advancement**, or **administration** of **medical care**; including research, diagnosis, risk assessment, prevention, therapy, rehabilitation, surgery, intervention design, and regulation

UPCOMING: TEN SIMPLE RULES, GUIDELINES & CERT.

COMMUNITY GENERATED TEN SIMPLE RULES

GOAL: A COMMON LANGUAGE ACROSS DISCIPLINES

Goal Oriented Activity: A glossary of terms is being generated on the Committee's to help unify the use of M&S vocabulary across a variety of disciplines and stakeholders in the field

We strongly encourages all stakeholders (e.g. SSH community) to help establish these terms and definitions by visiting: <u>http://wiki.simtk.org/cpms/Glossary and Definitions</u>

Example	e
	Simtk Wiki - cpms Glossary and Definitions/ credibility
Overview Team	FrontPage RecentChanges FindPage HelpContents credibility Immutable Page Info Attachments More Actions:
Downloads Documents Wiki	Credibility
Publications News	Dictionary Definition
Public Forums	Needs contribution
Advanced	Committee Definition
Downloads & Source Code	Needs contribution
This project has no public downloads, but makes <u>source code</u> available.	Domain Specific Usage
avaliable.	Engineering and Biomedical (NASA): The quality to elicit belief or trust in M&S results. ¹
	Notes
ASME	1.from NASA STANDARD FOR MODELS AND SIMULATIONS – https://standards.nasa.gov/documents/detail/3315599.

GOAL: ADOPTION OF GUIDELINES BY STAKEHOLDERS

Goal Oriented Activity: Active engagement of the global stakeholder community to ensure that the guidelines established capture the primary interests of the computational medicine community, and are widely adopted

Open discussions and contribution to activities:

- Wiki pages
- Discussion forum
- Meeting minutes
- Subversion repository access of all presentations, abstracts and posters

